Entity Resolution for Uncertain Data

نویسندگان

  • Naser Ayat
  • Reza Akbarinia
  • Hamideh Afsarmanesh
  • Patrick Valduriez
چکیده

Entity resolution (ER), also known as duplicate detection or record matching, is the problem of identifying the tuples that represent the same real world entity. In this paper, we address the problem of ER for uncertain data, which we call ERUD. We propose two different approaches for the ERUD problem based on two classes of similarity functions, i.e. context-free and context-sensitive. We propose a PTIME algorithm for context-free similarity functions, and a Monte Carlo algorithm for context-sensitive similarity functions. Existing context-sensitive similarity functions need at least one pass over the database to compute some statistical features of data, which makes it very inefficient for our Monte Carlo algorithm. Thus, we propose a novel context-sensitive similarity function that makes our Monte Carlo algorithm more efficient. To further improve the efficiency of our proposed Monte Carlo algorithm, we propose a parallel version of it using the MapReduce framework. We validated our algorithms through experiments over both synthetic and real datasets. Our performance evaluation shows the effectiveness of our algorithms in terms of success rate and response time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution

This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Tutorial: Uncertain Entity Resolution

Entity resolution is a fundamental problem in data integration dealing with the combination of data from different sources to a unified view of the data. Entity resolution is inherently an uncertain process because the decision to map a set of records to the same entity cannot be made with certainty unless these are identical in all of their attributes or have a common key. In the light of rece...

متن کامل

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Giant Cell Carcinoma of Endometrium: a Rare Clinical Entity

Giant cell carcinoma of the endometrium is a rare and an aggressive tumor that should be distinguished from other endometrial tumors with a prominent giant cell component, including trophoblastic tumors, certain primary sarcomas, and malignant mixed müllerian tumors. At present, cumulative data on this rare histological variant is limited and the prognostic significance of the presence and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017